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Abstract— The early and intermediate development of highly accelerated velocity and thermal boundary
layers are analyzed. For sufficiently large accelerations (or pressure gradients) and for total normal strains
which are not excessive, the equations for the Reynolds shear stress and turbulent heat transfer simplify
to give stresses and fluxes that remain approximately constant as they are convected along stream lines.
The theoretical results for the evolution of Stanton number and of mean velocity and temperature
distributions in favorable pressure gradients agree with experiment for the cases considered.

rE,

NOMENCLATURE

skin friction coefficient, 21,,/(pU2);

specific heat at constant pressure;

heat transfer coefficient, q,,/(T,, — T, );
pressure gradient or acceleration parameter,
—(v/pUz)dP/dx; = (v/U2)dUy/dx,;
maximum K for a particular run;

mean pressure;

Prandtl number, v/x;

fluctuating pressure component;

wall heat transfer per unit area;

defined by (14);

component of vector extending from point
P’ to P”;

dimensionless r, Ugri/v;

Stanton number, h/(pc,U..);

temperature;

wall temperature;

wall temperature at initial station;

free stream temperature;

dimensionless temperature defined by (5);
temperature parameter,

(Tw - T) Cprw//[qw \/(Tw/p)];

time;

mean velocity component;

dimensionless mean velocity component
Ui/ Uy;

free stream velocity;

free stream velocity at initial station;

mean longitudinal velocity along same stream
line where U, is measured, but at initial
station;

U /(Uy)o:

velocity parameter, Uy/\/(t./p);

;, fluctuating velocity component;

Uz, turbulent shear stress;

u,u%, dimensionless turbulent shear stress defined
by (11);

Xi, space coordinate;

x¥,  dimensionless space coordinate defined by
(6);

xo,  value of x, at initial station;

x5, dimensionless wall distance, \/(tw/p)xz/v;

o, thermal diffusivity;

v, kinematic viscosity;

v, stream function defined by (20);

W*,  dimensionless stream function, y/v;

0, density;

T, fluctuating temperature component;

Tu,, turbulent heat transfer;

Tuy*, dimensionless turbulent heat transfer defined
by (7);

Tyos wall shear stress.

Superscripts
" at points P’ and P”;
*

»

on quantity non-dimensionalized by suitable
combinations of Uy, (T,)o— T, v and p;
an averaged quantity.

INTRODUCTION

IN [1] we analyzed a moderately short turbulent
boundary layerin a severe pressure gradient as an initial
value problem. The mean velocity profile and
turbulence quantities were considered as known at an
initial longitudinal position. For sufficiently large
accelerations (or pressure gradients) and for total
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normal strains which were not excessive, the equations
for the Reynolds shear stress simplified to give a stress
that remains approximately constant as it is convected
along stream lines. The evolution of the velocity
boundary layer could then be calculated. The
experiments of Blackwelder and Kovasznay [2] suggest
the validity of the simplification used in [1], since
although the pressure gradients caused the mean flow
in those experiments to change considerably, the
Reynolds stresses, at least in the important intermediate
region of wall distances, were relatively unaffected.

Herein we carry out a similar analysis for the
evolution of a thermal boundary layer. For that
problem a simplification of the equations of motion
and heat transfer allows us to write the turbulent heat
transfer, as well as the Reynolds shear stress, as
approximately constant along a stream line. As in [1],
the method is applicable when the total longitudinal
strain is not excessive and a pressure-gradient
parameter is sufficiently large. Thus, although the
present problem might seem at first to be more
complicated than say the fully developed problem, it
turns out to be relatively tractable within the frame-
work of the present simplification.

Experimental studies of turbulent heat transfer in
severe pressure gradients have been made by several
investigators, e.g. [3-5]. In the analytical area, use has
been made of semiempirical mixing-length and single-
point two-equation models of turbulence [6-8]. The
present analysis, on the other hand, formulates an
initial-value problem which does not include adjustable
constants or functions. The region considered is mainly
the so-called relaminarization region for severe
favorable pressure gradients which has been observed
in the experiments of [3-5].

ANALYSIS
The equations for the development of the thermal
boundary layer will be considered first; the equations
for the velocity boundary layer were formulated in [1].
The equation for the mean temperature in an
incompressible turbulent flow [9] is

oT cT ¢ orT  __
+ Uy — o —Tu (1)

it Oxe Ox \ Oxy

where T is the mean temperature, t is the turbulent
temperature component, U, is a mean velocity
component, u, is a turbulent velocity component, x;
is a space coordinate, ¢ is the time, and « is the thermal
diffusivity. The overbar designates an averaged
quantity, and a repeated subscript in a term indicates
a summation of terms with the subscript successively
taking on the values 1, 2, and 3. For a thin steady-
state two-dimensional boundary layer, equation (1)
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becomes
T 9
A5 — =
ﬁxz (7X2
where x, is in the direction of the main flow.
Equation (2) can be written in dimensionless form as

GO _ 0T,
lﬁxl_ zaXZ

Tuz )

oT* aT* 1 0°T* otuy*
Ut =-Uf S +553 3
. 2 x| Proxtr’ oxt )

where

Ur = UyU, (G]
T* =(T,,— T)/[{T.)o—T.] 5
xf= (xi—xo)Uo/V (6)
Tix* = Ti/[(Two— T ]Uo (N
Pr=vju (8)

and U, is the velocity outside the boundary layer at the
initial station, (T,,), is the wall temperature at the initial
station, T,, is the constant temperature outside the
thermal boundary layer, and v is the kinematic
viscosity. The dimensionless mean velocity components
U and U# are obtained in [1] from the momentum
and continuity equations as

1oUF* LOUr v dP QUF  dujuz*
PR BRI T T e B
and

A J* *

e
where

wug* = uy/Ud (11

and P, which is a function only of x;, is the mean
pressure.

In order to solve equations (3)—(11) to obtain the
evolution of T* and U¥, the Reynolds shear stress
w1, and the turbulent heat transfer Tu; must be known
at each point in the flow. Since the Reynolds shear stress
was considered in [1], we will confine most of the
present discussion to the turbulent heat transfer. The
full two-point equations for the turbulent heat transfer
are given in [10], and can be written in abbreviated
dimensionless form for the steady-state case as

1 Ot'ui* 1 ot'ul*
1% 7 J J
S+ U S = U U
ox¥ 2 Ox%
AT ¥ YTk AT %
—u,’cu}’*(T *_,_;,*GU]- ﬂlorukuj
Ox* oxp* 2 oxt
ot'p"* 1 1\ o%ru)*
_*__7_*__‘;__*__ 1+* - J
or} 4 Pr ) Oxi Oxi¥

1\ o*Tu*
cie L *T'uj (12)
Pr ) ovkorf
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L0 (1R o
4 * 1 - A
ax¥ ox¥ Oxy x3 cr¥
l“zr’u”u}('*
B e (13)
T4 OXFixE

where, as in equation (3), the starred quantities have
been non-dimensionalized by suitable combinations
of Uy, (T,)o—T,, v and p, and p is the fluctuating
pressure component. The primes and double primes
designate quantities at points P’ and P”, which are
separated by the vector r, and the unprimed quantities
are measured at x;, which lies halfway between P’ and
P

Equations (12) and (13) contain triple velocity—
temperature correlations which can be obtained from
three-point equations. The latter contain quadruple
correlations which in turn can be obtained from four-
point equations, and so on. Thus, as in the case of the
equations for the velocity correlations in [1], an
infinite hierarchy of equations results. Equation (12)
for r; = 0 becomes

(14)

where R; represents the remainder of the terms in
equation (12) (for r; = 0).

Fach of the infinite hierarchy of higher order
equations can be put into a dimensionless form similar
to that of equations (3)--(14), or of equations (4)—(8) in
[1]- Thus, for given initial flow and temperature fields.
the flow and temperature fields at any position along
the boundary layers are given by the functional
equations

U¥ = fi[x¥ x5, (v/pUg)dP/dx, ] (15
inii* = fo]x%, x5, (v/pUg) dP/dx, | (16
T* = f3[ x¥. x%, (v/pU3)ydP/dx, ] (17
T = fu[oct, x4, (v/pU3) dP/dx, ] (18

and an infinite hierarchy of similar equations for other
turbulence quantities.

New parameters obtained by operating on the
parameters in equations (15)—(18) can. of course, be
used in their place, so long as the same total number
is maintained. Thus. by using the relation

1 dP
Tpdx,

du,
o 3 (19)
dx,
where U, is the velocity ‘at the edge of the boundary
layer, it is shown in [1], that one of the original para-
meters can be replaced by U, /U,.
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Equations (3), (9), and (14) can be transformed from
(x1,X32) to (x1,4) coordinates (von Mises coordinates),
where the stream function i is given by

Yoy, Yoy, (20)

X4 x5

~

The result for j = 2 is

cT* 1 ¢ cT* (17112
% U1 Y P (21)
xt Jy PHIJ/ oP* (l,b
1/cU¥? v dP | *”ZU*2
ot ), T T etedn 7 ERLPE
1T /v pUo dXy &Y
AR
T
oy
Tz *
<*A' ;) ~_—R2 (23)
oxt )y
where
Y=y 24)

Equation (23) can be integrated along a stream line
to give
ﬁ?zﬁ@m+j“ _RaldUi),

v [ Ue(U 0][(( Uy/e Xl)]\l/
where U = U, /(U,)o. The quantities (U;)q and (ti3*)o
are, respectively, the values of U, and tu,* on the
same streamline as U, and tu,* but at the initial
station, and U, is the value of U, at the initial station.
The subscript i indicates changes along a streamline.
The quantity R, will, at least initially. be close to zero,
since for the initial zero-pressure-gradient boundary
layer, the production terms are in approximate
cquilibrium with the other terms in R,. Then if R, is
not a strong function of ¢ U, /Cx,, equation (25) reduces
to

(25)

= [Tu20) ]o (26)
for sufficiently large [v/Us(U,)o] (QU,/Cxy), (or large
v/pU3dP/dx,). and/or for U,/(Uy), (or U, Up)
sufficiently close to one. A similar argument for u u;
in [1] shows that for the same conditions

TUy & T ()

(27)

i & w0 = [uun ) ]o.
That is, if the pressure-gradient parameter (or the
acceleration along stream lines) is sufficiently large, and
the total normal strain In(U,,/U,) is not excessive, the
turbulent heat transfer and Reynolds shear stress might
be considered as frozen at their initial values as they
are convected along streamlines. In that case Ti; and
iU for a particular flow are, of course, functions only
of .
Equation (25) and equation (16) in [ 1] indicate that
the allowable values of the parameters are inter-
dependent. For instance for U, /(U,), (or U,./Uy) quite
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close to one, equations (26) and (27) may apply
reasonably well even when the pressure gradient
parameter {or [v/Uo(U,)o] 0U;/0x,} is moderately
small. Conversely, for very large pressure gradient
parameters {or large [v/Uy(U,)o [éU,/0x,} it may be
allowable to have relatively large departures of
U /(Uy) (or of U,,/U,) from one.

In order to get an idea of how important an effect
normal strains might have on iuu;, analytical results
for locally homogeneous turbulence with uniform
normal strain and shear without turbulence self-inter-
action are considered in [1]. Results for
(AU /0x,)/(U, /éx;) = 2 indicate that for values of
U /(Uy)o of 2 or less, uiii; should not vary more than
about 14 per cent. For larger values of U,/(U;), the
variation of uju, is somewhat greater. However, the
variation of ujir; in an actual boundary layer, where
the turbulence is inhomogeneous and the parameter
(6U/Cx)/(¢U/8xy) is usually much greater than 2,
appears to be somewhat less according to the experi-
mental results of [2]. It might be expected that similar
results would apply to Tu5.

RESULTS AND DISCUSSION

Equations (21), (22), (26) and (27) have been
integrated numerically along streamlines to determine
the evolution of several velocity and thermal boundary
layers in severe pressure gradients. The numerical
integrations were carried out by using an implicit
method which was stable for all ratios of longitudinal
to transverse increments. Because of the steep gradients
close to the wall, more points were used in that region.
The boundary conditions for equations (21) and (22)
were U; =0 and T =T, at the wall, T = T, at the
edge of the thermal boundary layer, and U; = U, at
the edge of the velocity boundary layer.

Initial values of Stanton number and the longitudinal
pressure distributions for the severe favorable-pressure-
gradient data of Moretti and Kays [5] were used, and
the predicted results were compared with data from
those experiments. Since initial velocity and
temperature profiles and initial uyu, and Tu; distribu-
tions were not given in [5], they were calculated from
the analysis of [11], together with initial Stanton and
Reynolds numbers from [5] and skin friction co-
efficients from [ 12]. Although the analysis of [ 11] does
not include wake regions for the profiles, reasonably
good agreement with Klebanoff’s flat-plate data is
obtained by using a Karman constant of 0-36 in the
logarithmic equation and applying that equation out
to the edge of the boundary layer ([12], Fig. 1). It was
shown in [1] that the wake region is quickly destroyed
by strong favorable pressure gradients, such as the ones
considered here. It might be emphasized that the
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F1G. 1. Comparison of evolution of theoretical Stanton
number and skin-friction coefficient in moderately short
highly accelerated turbulent boundary layers.

analysis of [11] and [12] is not a part of the present
theory, but is used only as a device for obtaining
initial conditions.

Figure 1 shows theoretical Stanton-number and skin-
friction-coefficient variations with dimensionless longi-
tudinal distance for run 12 from [5]. The shear stress
and heat transfer at the wall for the theoretical curves
were obtained from the slopes of the velocity and
temperature profiles at the wall by using points very
close to the wall (\/(rw/p)xz/v « 1). Also included in
the plot are experimental values for U,/U,. Initial
conditions were taken at x, = 4-32 ft. The difference
between the Stanton number and skin-friction-
coefficient variations is rather striking and indicates
that Reynolds analogy does not apply in regions of
severe pressure gradients. This difference is also
indicated in the experimental results of [2] and [5].

The effect of favorable pressure gradients on velocity
and temperature distributions is illustrated in Fig. 2,
where theoretical values of T% and U;" are plotted
against x; for a low and a high value of pressure-
gradient parameter K = — (v/pU2)dP/dx,. The results
are again for run 12 from [5]. The effect of the pressure
gradient on the T* profile tends to be opposite to
that on the Uy profile. Whereas the pressure gradient
flattens the U;" profile in the outer region of the
boundary layer, it steepens the T profile in that
region. The same trends have been observed experi-
mentally in [13] and [3]. The difference between the
velocity and temperature results (or the skin friction
and heat transfer results) is evidently due to the fact
that the equation for the evolution of the mean velocity
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FiG. 2. Comparison of evolution of theoretical velocity and
temperature distributions in moderately short highly
accelerated turbulent boundary layers.

contains a pressure-gradient term [equation (9)]
whereas that for the mean temperature does not
[equation (3)]. Although the temperature equation
does not contain a pressure gradient term, the pressure
gradient can still affect the temperature through the
mean velocity.

A comparison between theory and experiment for the
evolution of Stanton number in severe favorable
pressure gradients is presented in Fig. 3 for four values
of maximum pressure—gradient parameter K,. The
values of x, for the initial conditions for the four
runs (runs 41, F-3, 12, and 7) were, respectively, taken
at xo = 3-64, 3-64, 432 and 244 ft. For the smaller
values of K, good agreement between theory and
experiment is indicated for values of U_/U, which are
not too large. It appears that the range of values of
U, /U, for which the theory applies increases as the
pressure—gradient or acceleration parameter increases,
as would be expected from equation (25). For values
of x¥ (or of U,/U) greater than those shown in
Fig. 3, the theory appears to break down because the
total normal strain In U, /U, becomes too great and/or
the pressure-gradient parameter K becomes too small.

Figure 3 also shows Stanton numbers calculated for
turbulent initial velocity and temperature profiles, but
for Tu; = uyu, = 0. Itis seen that the turbulent stresses
and fluxes have a very large effect on the evolution
of the Stanton number. The large effect of turbulence
on Stanton number perhaps raises questions about
calling regions such as those shown in Fig. 3
“relaminarization regions,” although at the large values
of K,, and x} there is some tendency for the zero-
turbulence curves to approach those for turbulence.
The effects of . turbulence on the velocity and
temperature distributions are also considerable,
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Fi1G. 3. Comparison of theory

and experiment for evolution of

Stanton number in moderately

short highly accelerated turbu-
lent boundary layers.

although the general trends without turbulence are
similar to those in Fig. 2.

It should, of course, be remembered that Stanton
number, as well as C;, T and U, at any longitudinal
position depend on the whole distribution of pressure
gradients up to that position. That is, Stanton number,
for instance, is a functional of dP/dx;,, or

St =58t [dP(
=51 4! 4

where 0 < & < x;.
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CONCLUSIONS

The use of a Reynolds shear stress and turbulent
heat transfer which remain frozen at their initial values
as they are convected along streamlines gives results
in agreement with experiment for severe favorable
pressure gradients, when the total normal strain is not
excessive. Both theory and experiment showed a
flattening of the velocity profile in the outer region of
the boundary layer, whereas they showed a steepening
of the temperature profile in that region. Also, the
evolution of the Stanton number differed considerably
from that of the skin friction coefficient; Reynolds
analogy between skin friction and heat transfer
evidently does not apply in severe pressure gradients.
Comparison of calculations with and without turbulent
stresses and fluxes indicated that turbulence has a very
large effect on the evolution of the Stanton number.

Acknowledgement—1 should like to acknowledge the work of
Frank B. Molls on the numerical integration of equations
(21) and (22).
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EVOLUTION DU TRANSFERT THERMIQUE ET DE L’ECOULEMENT POUR
DES COUCHES LIMITES TURBULENTES ASSEZ COURTES DANS DES
GRADIENTS DE PRESSION SEVERES

Résumé—On analyse le développement initial et intermédiaire de couches limites dynamiques et

thermiques fortement accélérées. Pour des accélérations (ou des gradients) suffisamment grandes et pour

des contraintes normales totales pas trop fortes, les équations, pour les tensions de Reynolds et le

transfert thermique turbulent, se simplifient et donnent des contraintes et des flux qui restent approxi-

mativement constants dans le sens des lignes de courant. Les résultats théoriques pour Iévolution du

nombre de Stanton et la distribution de la vitesse moyenne et de la température en gradient de pression
favorable s’accordent avec I'expérience.

ENTWICKLUNG DES WARMEUBERGANGS UND DER STROMUNG IN KURZEN,
TURBULENTEN GRENZSCHICHTEN BEI GROSSEN DRUCKGRADIENTEN

Zusammenfassung—Das Anlauf- und Zwischenstadium der Stromungs- und Temperaturgrenzschicht

bei hohen Beschleunigungen wird untersucht. Fiir ausreichend groBe Beschlcunigungen (oder Druck-

gradienten) und normale Gesamtbelastung vereinfachen sich die Gleichungen fiir Schubspannung und

Wiirmeiibergang. so dafl sich Spannungen und Wirmestréme ergeben. die liings Stromlinien niherung-

sweise konstant bleiben. Die theoretischen Ergebnisse stimmen in Stanton-Zahl und mittlerer Geschwindig-

keits- und Temperaturverteilung bei giinstigen Druckgradienten mit den Experimenten in den betrachteten
Féllen iiberein.
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PA3BUTUE TEMJIOOGMEHA U TEYEHWSA B TYPBYJIEHTHbLIX MMTOIPAHUYHbBIX
CJI0AX CPEAHEU TMPOTSIXXEHHOCTU MPU BONBIINX IPAAUEHTAX JABJIEHUS
AHHOTaUMS — AHANU3UPYETCS HAYaNbHAS ¥ NPOMEXYTOUHAS CTAAUH PA3BUTHUS CUIIBHO YCKOPEHHOTO
IMHAMMUYECKOTO W TEIUIOBOTO MOTPaHuyHbIX cloeB. B ciyvae HOCTATOMHO GOMbILIUX yCKOpEHHit
(MM TPAAMEHTOB [ABJIEHHs) U CYMMAPHBIX HOPManbHbIX aedopMauui, He SIBISIOLIMXCS U3ObLITOY-
HBIMH, [UTS OTIPEAESCHUS HAMPAKEHHN U MOTOKOB, KOTOPbIE NPUOIM3NTENbHO OCTAKOTCH MOCTOSAH-
HBIMH BOJb JIMHUK TOKA, YIIPOLIAIOTCH YPABHCHWA HarpsbkeHust Peiinonibaca M TypOyneHTHOro
TennoobMeHa. B paccMaTpuBaeMbIx Cilyvasix IKCHICPUMEHTAJIbHBIC JaHHbIE COrNACyIOTCS ¢ TEOPETH-
4ecKUMHK pe3ybTaTaMid 00 vimMeHenun yucna CTanToHa W pacnpenesieHUd CPeaOHUX CKOpOCTel W

TEMIEPATYP [PU HAJIMYUK OTPULEATCILHBIX TPAMEHTOB AABJEHUS,
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