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Abstract The early and intermediate development of highly accelerated velocity and thermal boundary 
layers are analyzed. For sufficiently large accelerations (or pressure gradients) and for total normal strains 
which are not excessive, the equations for the Reynolds shear stress and turbulent heat transfer simplify 
to give stresses and fluxes that remain approximately constant as they are convected along stream lines. 
The theoretical results for the evolution of Stanton number and of mean velocity and temperature 

distributions in favorable pressure gradients agree with experiment for the cases considered. 

NOMENCLATURE 

Cs., skin friction coefficient, 2Zw/(pU2); 
Cv, specific heat at constant pressure; 
h, heat transfer coefficient, qw/(Tw- To); 
K, pressure gradient or acceleration parameter, 

- (v/p U 3 ) dP/dxl  = (v/U 2) d U~/dx ~ ; 
K,., maximum K for a particular run; 
P, mean pressure; 
Pr, Prandtl number, v/ct; 
p, fluctuating pressure component;  
qw, wall heat transfer per unit area; 
Rj, defined by (14); 
rk, component of vector extending from point 

P' to P"; 
r*, dimensionless rk, U o r k / v  ; 

St, Stanton number, h/(pcpU~,~); 
T, temperature; 
Tw, wall temperature; 
(Tw)0, wall temperature at initial station; 
Z~,, free stream temperature; 
T*, dimensionless temperature defined by (5); 
T +, temperature parameter, 

, / / , 
(Tw - T)%zw/[qw ~/(Zw/p)], 

t, time; 
Ui, mean velocity component;  
U~*, dimensionless mean velocity component 

UjUo; 
U~, free stream velocity; 
Uo, free stream velocity at initial station; 
(U~)o, mean longitudinal velocity along same stream 

line where U1 is measured, but at initial 
station; 

U1 O, ( ] l / ( U 1 ) o ;  

U1 +, velocity parameter, U1/x/(%/P); 

ui, fluctuating velocity component;  
uau2, turbulent shear stress; 
UxU~, dimensionless turbulent shear stress defined 

by (11); 
xi, space coordinate; 
x~' ,  dimensionless space coordinate defined by 

(6); 
x0, value of xl at initial station; 

+ dimensionless wall distance, x/(zw/p)xg/v; X2 , 

c~, thermal diffusivity; 
v, kinematic viscosity; 
~b, stream function defined by (20); 
~b*, dimensionless stream function, O/v; 
p, density; 
z, fluctuating temperature component; 
zu2, turbulent heat transfer; 
~ * ,  dimensionless turbulent heat transfer defined 

by (7); 
rw, wall shear stress. 

Superscripts 
', ", at points P' and P"; 
* on quantity non-dimensionalized by suitable 

combinations of U0, (Tw)0- T~, v and p; 
- - ,  an averaged quantity. 

INTRODUCTION 

IN [1] WE analyzed a moderately short turbulent 
boundary layer in a severe pressure gradient as an initial 
value problem. The mean velocity profile and 
turbulence quantities were considered as known at an 
initial longitudinal position. For sufficiently large 
accelerations (or pressure gradients) and for total 
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normal strains which were not excessive, the equations 
for the Reynolds shear stress simplified to give a stress 
that remains approximately constant as it is convected 
along stream lines. The evolution of the velocity 
boundary layer could then be calculated. The 
experiments of Blackwelder and Kovasznay [2] suggest 
the validity of the simplification used in [1], since 
although the pressure gradients caused the mean flow 
in those experiments to change considerably, the 
Reynolds stresses, at least in the important intermediate where 
region of wall distances, were relatively unaffected. 

Herein we carry out a similar analysis for the 
evolution of a thermal boundary layer. For that 
problem a simplification of the equations of motion 
and heat transfer allows us to write the turbulent heat 
transfer, as well as the Reynolds shear stress, as 
approximately constant along a stream line. As in [1], 
the method is applicable when the total longitudinal 
strain is not excessive and a pressure-gradient 
parameter is sufficiently large. Thus, although the 
present problem might seem at first to be more 
complicated than say the fully developed problem, it 
turns out to be relatively tractable within the frame- 
work of the present simplification. 

Experimental studies of turbulent heat transfer in 
severe pressure gradients have been made by several 2 8x* 
investigators, e.g. [3-5]. In the analytical area, use has 

and 
been made of semiempirical mixing-length and single- 
point two-equation models of turbulence [6 8]. The 
present analysis, on the other hand, formulates an 
initial-value problem which does not include adjustable where 
constants or functions. The region considered is mainly 
the so-called relaminarization region for severe 
favorable pressure gradients which has been observed 
in the experiments of [3 5]. 

ANALYSIS 

The equations for the development of the thermal 
boundary layer will be considered first; the equations 
for the velocity boundary layer were formulated in [1]. 
The equation for the mean temperature in an 
incompressible turbulent flow [9] is 

,?T 8T O (o (?T ) 
- - + u k  - - ~ g k  (1) 
Ot OX k "~X k k (~X k 

where T is the mean temperature, z is the turbulent 
temperature component, Uk is a mean velocity 
component, iik is a turbulent velocity component, x k 
is a space coordinate, t is the time, and e is the thermal 
diffusivity. The overbar designates an averaged 
quantity, and a repeated subscript in a term indicates 
a summation of terms with the subscript successively 
taking on the values 1, 2, and 3. For a thin steady- 
state two-dimensional boundary layer, equation (1) 

becomes 

c3T 0T ~2T 0 
- -  + ~ ru~ (2) 

U1 E = -- U2 6~X2 OX2 (')X2 

where x~ is in the direction of the main flow. 
Equation (2) can be written in dimensionless form as 

8T* 0T* 1 02T * gzu2* 
U*ox,=-C¢ "~ ~ + ~ - ~ 2 +  8x* (3) 

u* = u,/8o (4) 

T* = (Tw- T)/[(Tw)o - To~] (5) 

x* = ( x l -  Xo) Uo/v (6) 

zu~z* = ~ / [ (T~)o  - T~] Uo (7) 

Pr = v/a (8) 

and Uo is the velocity outside the boundary layer at the 
initial station, (Tw)o is the wall temperature at the initial 
station, T~ is the constant temperature outside the 
thermal boundary layer, and v is the kinematic 
viscosity. The dimensionless mean velocity components 
U* and U~' are obtained in [1] from the momentum 
and continuity equations as 

10U .2 t r ,  OU* v dP 82U * Ouxu2* 
- '-'2 c~x~ pU~dxl  ~- 8x .2 8x'~ (9) 

,~u* ou~ 
8x~ OxT 

(10) 

ui@* = ~iu~/U~ (11) 

and P, which is a function only of x~, is the mean 
pressure. 

In order to solve equations (3)-(11) to obtain the 
evolution of T* and U;', the Reynolds shear stress 
u ~uz and the turbulent heat transfer ~ must be known 
at each point in the flow. Since the Reynolds shear stress 
was considered in [1], we will confine most of the 
present discussion to the turbulent heat transfer. The 
full two-point equations for the turbulent heat transfer 
are given in [10], and can be written in abbreviated 
dimensionless form for the steady-state case as 

1 c? ' '!* 1 , ,, & ' u j * =  -~(ui*+ui'*) ~ruj 
~ ( u , * + u , * ) ~  ~ ,,,x~ 

OT'* 8U)'* 1 (?Z'U'kU'~* 
-- U'kUy* OX,k---- ~ -  Z'U'k'* 8X~* 2 8Xt 

1 (  1 \ 0 2 ~  * 
+ 

+ (1 + 1 * 
PrJ Or* Or* 

(12) 
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1 g2r'p'~* 
( Xj  UXj 

~Uf*__ (1 ~7~c'u~ * + ¢~'u~*~ 
F 2 ; \ ~  ,~x* ~,.* ) 

1 ?2z'u.Tu~* 
. . . .  _ _ . . .  

4 /'x* &* 
{13) 

where, as in equation (3), the starred quantities have 
been non-dimensionalized by suitable combinations 
of U0, (T~)0-T~, v and p, and p is the fluctuating 
pressure component. The primes and double primes 
designate quantities at points P' and P", which are 
separated by the vector r, and the unprimed quantities 
are measured at x~, which lies halfway between P' and 
p,,. 

Equations (12) and (13) contain triple velocity 
temperature correlations which can be obtained from 
three-point equations. The latter contain quadruple 
correlations which in turn can be obtained from four- 
point equations, and so on. Thus, as in the case of the 
equations for the velocity correlations in [1], an 
infinite hierarchy of equations results. Equation (12) 
for r~ = 0 becomes 

<~5. u* <~* 
('x* = U* iTx~ I- Rj 

where Ri represents the remainder of the terms in 
equation (12) (for r~ = 0). 

Each of the infinite hierarchy of higher order 
equations can be put into a dimensionless form similar 
to that of equations (3) (14), or of equations (4) (8) in 
[1]. Thus, for given initial flow and temperature fields, 
the flow and temperature fields at any position along 
the boundary layers are given by the 
equations 

U* = .f~ [x'L x*, (v/p Ui~) dP/d.v, ] 

@0" =,12 Ix*, x'~,(v/pU3o) dP/dxl] 
T* = <13 [x*, x~, (Vl'p U,~) dP/dx, ] 

~'11)* =ff4EX1,X2,(V/D' * * ' U 3o)dP/dxl] 

functional 

and an infinite hierarchy of similar equations for other 
turbulence quantities. 

New parameters obtained by operating on the 
parameters in equations (15)-(18) can, of course, be 
used in their place, so long as the same total number 
is maintained. Thus, by using the relation 

1 dP dU~ 

- p d £ =  u~ dx7 

where U~. is the velocity'at the edge of the boundary 
layer, it is shown in [1], that one of the original para- 
meters can be replaced by U~/Uo. 

Equations (3), (9), and (14) can be transformed from 
(x~, x g) to (xl, ~) coordinates (yon M ises coordinates), 
where the stream function ~ is given by 

30 c~, 
. . . .  U 2 ,  ~-- = Ul, (20) 
~ X  1 ( 'X  2 

The result for.j = 2 is 

({?T*~ 1 C [ . , ? T * ~  ~z,~2* 
= U1 _ _  -t- _ _  

/ \  dP { ' 2 U . 2  I (~U*2/  _ v ~ i c  * 1 
2 \ L * ) ¢  pgo3dXl-C2 i 30 .2 

- U *  p-~, , -  (22)  

(23) - ~ = R2 
\ r-"T )+ 

where 

~k* = ~k/v. (24)  

Equation (23) can be integrated along a stream line 
to give 

Iwp R2(dUO)o 
(14) ~ *  = (r~T22*)o + (25) 

, [v/Oo(U,)o][(CU, l~x,)]+ 

where Up = Ul/(U1)o. The quantities tU,)o and (ru2*)o 
are, respectively, the values of U1 and ru2* on the 
same streamline as U~ and ru2* but at the initial 
station, and Uo is the value of U~ at the initial station. 
The subscript ~k indicates changes along a streamline. 
The quantity R2 will, at least initially, be close to zero, 
since for the initial zero-pressure-gradient boundary 
layer, the production terms are in approximate 
equilibrium with the other tcrms in R2. Then if R2 is 
not a strong function of i'UL/i'x~, equation (25) reduces 

(15) to 

(16) ru2 ~ 7tie(O) = [Tu~flk)]o (26) 

(17) for sufficiently large [v/Uo(U1)o](kUU?xOo (or large 
(IS) ,,IptJ~dP/d-<), and/or for UU(UDo (or u~/Uo) 

sufficiently close to one. A similar argument for tllll 2 
in [1] shows that for the same conditions 

111/I 2 ~ 7illi2(1~) = [l, l l l2(I / I )] , , .  (27) 

That is, i f  the pressure-gradient parameter (or the 
acceleration along stream lines) is sufficiently large, and 
the total normal strain In (U,,/Uo) is not excessive, the 
turbulent heat transfer and Reynolds shear stress might 
be considered as frozen at their initial values as they 

(19) are convected along streamlines. In that case zu2 and 
t-qu2 for a particular flow are, of course, functions only 
of 0. 

Equation (25) and equation (16) in I l l  indicate that 
the allowable values of the parameters are inter- 
dependent. For instance for Uv'(U0o (or U~/Uo) quite 
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close to one, equations (26) and (27) may apply 
reasonably well even when the pressure gradient 
parameter {or[,v/Uo(Ujo]OU1/~?xi} is moderately 
small. Conversely, for very large pressure gradient 
parameters {or large [v/Uo(Ujo]i?Ut/?x~} it may be 
allowable to have relatively large departures of 
UI/(UOo (or of U~,jUo) from one. 

In order to get an idea of how important an effect 
normal strains might have on uxu2, analytical results 
for locally homogeneous turbulence with uniform 
normal strain and shear without turbulence self-inter- 
action are considered in [1]. Results for 
(?Ux/g'xz)/(~U~/?x~) = 2 indicate that for values of 
UI/(UOo of 2 or less, u]7~2 should not vary more than 
about 14 per cent. For larger values of U~/(UJo the 
variation of ulu2 is somewhat greater. However, the 
variation of UlU2 in an actual boundary layer, where 
the turbulence is inhomogeneous and the parameter 
(?,U1/(?x2)/(~U1//~?xl) is usually much greater than 2, 
appears to be somewhat less according to the experi- 
mental results of [2]. It might be expected that similar 
results would apply to Tu~. 
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F~G. 1. Comparison of evolution of theoretical Stanton 
number and skin-friction coefficient in moderately short 

highly accelerated turbulent boundary layers. 

R E S U L T S  A N D  D I S C U S S I O N  

Equations (21), (22), (26) and (27) have been 
integrated numerically along streamlines to determine 
the evolution of several velocity and thermal boundary 
layers in severe pressure gradients. The numerical 
integrations were carried out by using an implicit 
method which was stable for all ratios of longitudinal 
to transverse increments. Because of the steep gradients 
close to the wall, more points were used in that region. 
The boundary conditions for equations (21) and (22) 
were Ut = 0 and T = Tw at the wall, T = T:~ at the 
edge of the thermal boundary layer, and U1 = U~ at 
the edge of the velocity boundary layer. 

Initial values of Stanton number and the longitudinal 
pressure distributions for the severe favorable-pressure- 
gradient data of Moretti and Kays [-5] were used, and 
the predicted results were compared with data from 
those experiments. Since initial velocity and 
temperature profiles and initial ~ and r ~  distribu- 
tions were not given in [5], they were calculated from 
the analysis of [11], together with initial Stanton and 
Reynolds numbers from [5] and skin friction co- 
efficients from [12]. Although the analysis of [1 l] does 
not include wake regions for the profiles, reasonably 
good agreement with Klebanoff's flat-plate data is 
obtained by using a Karman constant of 0.36 in the 
logarithmic equation and applying that equation out 
to the edge of the boundary layer ([-12], Fig, 1). It was 
shown in [1] that the wake region is quickly destroyed 
by strong favorable pressure gradients, such as the ones 
considered here. It might be emphasized that the 

analysis of [11] and [12] is not a part of the present 
theory, but is used only as a device for obtaining 
initial conditions. 

Figure 1 shows theoretical Stanton-number and skin- 
friction-coefficient variations with dimensionless longi- 
tudinal distance for run 12 from [5]. The shear stress 
and heat transfer at the wall for the theoretical curves 
were obtained from the slopes of the velocity and 
temperature profiles at the wall by using points very 
close to the wall (4('c~,/p)x2/v << 1). Also included in 
the plot are experimental values for U~/Uo. Initial 
conditions were taken at Xo = 4.32 ft. The difference 
between the Stanton number and skin-friction- 
coefficient variations is rather striking and indicates 
that Reynolds analogy does not apply in regions of 
severe pressure gradients. This difference is also 
indicated in the experimental results of [-2] and [-5]. 

The effect of favorable pressure gradients on velocity 
and temperature distributions is illustrated in Fig. 2, 
where theoretical values of T + and U~ + are plotted 
against x~ for a low and a high value of pressure- 
gradient parameter K = - (v/pU~) dP/dxv The results 
are again for run 12 from [5]. The effect of the pressure 
gradient on the T + profile tends to be opposite to 
that on the U( profile. Whereas the pressure gradient 
flattens the U~ + profile in the outer region of the 
boundary layer, it steepens the T + profile in that 
region. The same trends have been observed experi- 
mentally in [13] and [3]. The difference between the 
velocity and temperature results (or the skin friction 
and heat transfer results) is evidently due to the fact 
that the equation for the evolution of the mean velocity 
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FIG. 2. Comparison of evolution of theoretical velocity and 
temperature distributions in moderately short highly 

accelerated turbulent boundary layers. 
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contains a pressure-gradient term [equation (9)] 
whereas that for the mean temperature does not 
[equation (3)]. Although the temperature equation 
does not contain a pressure gradient term, the pressure 
gradient can still affect the temperature through the 
mean velocity. 

A comparison between theory and experiment for the 
evolution of Stanton number in severe favorable 
pressure gradients is presented in Fig. 3 for four values 
of maximum pressure-gradient parameter K,,. The 
values of x0 for the initial conditions for the four 
runs (runs 41, F-3, 12, and 7) were, respectively, taken 
at Xo = 3.64, 3'64, 4.32 and 2.44 ft. For the smaller 
values of Km good agreement between theory and 
experiment is indicated for values of U~/U o which are 
not too large. It appears that the range of values of 
U~/Uo for which the theory applies increases as the 

pressure-gradient or acceleration parameter increases, 
as would be expected from equation (25). For values 
of x* (or of U~/Uo) greater than those shown in 
Fig. 3, the theory appears to break down because the 
total normal strain In U~/Uo becomes too great and/or 
the pressure-gradient parameter K becomes too small. 

Figure 3 also shows Stanton numbers calculated for 
turbulent initial velocity and temperature profiles, but 
for Yu2 = ulu2 = 0. It is seen that the turbulent stresses 
and fluxes have a very large effect on the evolution 
of the Stanton number. The large effect of turbulence 
on Stanton number perhaps raises questions about 
calling regions such as those shown in Fig, 3 
"relaminarization regions," although at the large values 
of Km and x* there is some tendency for the zero- 
turbulence curves to approach those for turbulence. 
The effects of. turbulence on the velocity and 
temperature distributions are also considerable, 

2 4  

lo 2 0  

× 1 6  

o,F': ,T;.-: 
~81 0 { C ) K m  : ~ ' 3 9 x  10-6 

2 4  

'O 2 0  

"-2 r o~p / 
~8 I L 0 [ - - e  ~ I I I 1 1 xlO5 

2 X~* 4 

( d ) K m = 3  5 1 X 1 0  -e 

FIG. 3. Comparison of theory 
and experiment for evolution of 
Stanton number in moderately 
short highly accelerated turbu- 

lent boundary layers. 

although the general trends without turbulence are 
similar to those in Fig. 2. 

It should, of course, be remembered that Stanton 
number, as well as C I, T and U1 at any longitudinal 
position depend on the whole distribution of pressure 
gradients up to that position. That is, Stanton number, 
for instance, is a functional of dP/dxl, or 

where 0 < ~ < xl. 
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CONCLUSIONS 

The use of a Reynolds shear stress and turbulent  
heat  transfer which remain frozen at their initial values 
as they are convected along streamlines gives results 
in agreement  with experiment for severe favorable 
pressure gradients, when the total normal  strain is not 
excessive. Both theory and experiment showed a 
flattening of the velocity profile in the outer  region of 
the boundary  layer, whereas they showed a steepening 
of the temperature  profile in that  region. Also, the 
evolution of the Stanton number  differed considerably 
from that  of the skin friction coefficient; Reynolds 
analogy between skin friction and heat  transfer 
evidently does not  apply in severe pressure gradients. 
Compar i son  of calculations with and without  turbulent  
stresses and  fluxes indicated that  turbulence has a very 
large effect on the evolution of the Stanton number.  

Acknowledgement--I should like to acknowledge the work of 
Frank B. Molls on the numerical integration of equations 
(21) and (22). 
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EVOLUTION DU TRANSFERT THERMIQUE ET DE L'ECOULEMENT POUR 
DES COUCHES LIMITES TURBULENTES ASSEZ COURTES DANS DES 

GRADIENTS DE PRESSION SEVERES 

R6sum6--On analyse le d6veloppement initial et interm6diaire de couches limites dynamiques et 
thermiques fortement acc616r6es. Pour des acc616rations (ou des gradients) suffisamment grandes et pour 
des contraintes normales totales pas trop fortes, les 6quations, pour les tensions de Reynolds et le 
transfert thermique turbulent, se simplifient et donnent des contraintes et des flux qui restent approxi- 
mativement constants dans le sens des lignes de courant. Les r6sultats th6oriques pour l'6volution du 
nombre de Stanton et la distribution de la vitesse moyenne et de la temp6rature en gradient de pression 

favorable s'accordent avec l'exp6rience. 

ENTWICKLUNG DES W~RMEI~BERGANGS UND DER STROMUNG IN KURZEN, 
TURBULENTEN GRENZSCHICHTEN BEI GROSSEN DRUCKGRADIENTEN 

Zusammenfassung--Das Anlauf- und Zwischenstadium der Str6mungs- und Temperaturgrenzschicht 
bei hohen Beschleunigungen wird untersucht. Fi?lr ausreichend grol3e Beschleunigungen (oder Druck- 
gradienten) und normale Gesamtbelastung vereinfachen sich dic Gleichungen fi_ir Schubspannung und 
W~,irmefibergang, so dal3 sich Spannungen und W~irmcstrSme ergeben, die I~ings Stromlinien n~iherung- 
sweise konstant bleiben. Die theoretischen Ergebnisse stimmen in Stanton-Zahl und mittlerer Geschwindig- 
keits- und Temperaturverteilung bei giJnstigen Druckgradienten mit den Experimenten in den betrachteten 

F~illen i?lberein. 
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P A 3 B I / I T H E  T E H Y I O O B M E H A  H T E q E H E I . q  B TYPISY.TIEHTHBIX H O V P A H H q H B I X  
C J I O , q X  C P E ~ H E I T I  F I P O T / t ) K E H H O C T H  HPI/I BO.flBILIHX F P A ~ I / I E H T A X  ~ A B Y l E H I 4 / t  
A H H O T a l I H ~ !  - -  m~ta.qH314pyeTc~ Haqa.qbHa~ H l~pOMe~yTOqHa~ CTa~,H14 pa3BHT14It C14.flbl-tO ycKope14HOFO 
/],14HaM14qeCKOFO 1t TerlJIOBOFO llOFpallllq14blX C.rlOeB. B c,qyqae ,ROCTaTOqHO 60.qbm14X ycKopeHHfl 
(t,12114 Fpa/114eHTOB jlaBYleHH~I) 14 CyMMap14blX HOpMaYlbHblX 21,e~opMal114~, He ItB.FI!qIOLLI,14XCII 1136BITOq- 
HblMH, ~Jllt onpeaeJ~eH14n nat~pn~e1414~ 1,1 HOTOKOB, KOTOpble rlpHOJ114314TeJlbHO OCTalOTC/I FIOCTOItH- 
HblMI, I B~OJIb 2114H1414 ToKa, yrlpot t latoTcn ypaBHeHH~ tlaIlplt)KettH~t Pe~Ho.qbB, Ca H Typ6yYteHTHOrO 
Ten.qOO6MeHa. B pacCMaTp14BaC:MblX c: ly, tanx 7)KCHep14MCItTaYlbllble ~l, attHble coF~lacyroTcn c TeopeT14- 
qeCKHMH pe3yYlbTaTaM14 O6 M3MeHeH14H q14cJla CTalITOHa 14 pacnpe~,e.qeH1414 cpe~,H14X cKopocTe~ 14 

TeMrlepaTyp np14 HaJIHq14H OTpHLI, aTe.qbltblX Fpa~HeHTOB /laB,qe}lrln. 


